Exercise:
If ${{A}^{2}}=\left( \begin{matrix}
1 & 4 \\
0 & 1 \\
\end{matrix} \right)$ and $B$ is the inverse of ${{A}^{2}}$ then Find ${{\left( AB \right)}^{-1}}=??$
Solution: The necessary condition for matrix to be invertible is$\det \left( {{A}^{2}} \right)\ne 0$
So$\det \left( {{A}^{2}} \right)=\det {{\left( A \right)}^{2}}=1-0=1\ne 0$ thus $\det \left( A \right)=\pm 1\ne 0$ so $B$ exits
Hence \(B={{\left( {{A}^{2}} \right)}^{-1}}={{A}^{-2}}=\left( \begin{matrix}
1 & -4 \\
0 & 1 \\
\end{matrix} \right)\)
${{\left( AB \right)}^{-1}}={{\left( A{{A}^{-2}} \right)}^{-1}}={{\left( A{{A}^{-1}}{{A}^{-1}} \right)}^{-1}}=I{{\left( {{A}^{-1}} \right)}^{-1}}=A$
To find $A\in {{M}_{2}}\left( \mathbb{R} \right)$ we need to assume $A=\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)$ where $a,b,c,d\in \mathbb{R}$
We have $\det \left( A \right)=\pm 1\Leftrightarrow ad-bc=\pm 1$ (*)
Also ${{A}^{2}}=A.A\Leftrightarrow \left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right).\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)=\left( \begin{matrix}
1 & 4 \\
0 & 1 \\
\end{matrix} \right)\Leftrightarrow \left( \begin{matrix}
{{a}^{2}}+bc & ab+bd \\
ac+dc & cb+{{d}^{2}} \\
\end{matrix} \right)=\left( \begin{matrix}
1 & 4 \\
0 & 1 \\
\end{matrix} \right)$
So we get $ab+bd=4\Leftrightarrow b\left( a+d \right)=4\Leftrightarrow b=\frac{4}{a+d}\,\,\,,a+d\ne 0$
So $ac+dc=0\Leftrightarrow c\left( a+d \right)=0\Leftrightarrow c=0$ whenever$a+d\ne 0$
But ${{a}^{2}}+bc=1=bc+{{d}^{2}}\Leftrightarrow {{a}^{2}}={{d}^{2}}\Leftrightarrow \left| a \right|=\left| d \right|$ since $a+d\ne 0\Leftrightarrow a=d$
Also $\det \left( A \right)=ad-bc=\pm 1\Leftrightarrow {{a}^{2}}=\pm 1\Leftrightarrow a=\pm 1$
So $A=\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)=\left( \begin{matrix}
a & \frac{4}{a+d} \\
0 & d \\
\end{matrix} \right)=\left( \begin{matrix}
d & \frac{2}{d} \\
0 & d \\
\end{matrix} \right)=d\left( \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right)$ is true whenever \( d=1\)
$AB=A{{A}^{-2}}={{A}^{-1}}$so its inverse is $A$
ReplyDeleteWhere $A=\left( \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right)\,$ or $A=\left( \begin{matrix}
-1 & -2 \\
0 & -1 \\
\end{matrix} \right)$
the answer is A and much easy to see
*________________________
Swami Dayanand