Processing math: 100%

Pages

Limit Exercise asked by Dan S in many Math groups Level 3


Exercise:

Find limxx1tt1(t+tlnt+1)dtxx

Solution: Let f(x)=x1tt1(t+tlnt+1)dt&g(x)=xx

So limxx1tt1(t+tlnt+1)dtxx=limxf(x)g(x)=f()g()=indform

Using L’Hopital Rule and Fundamental theorem of calculus we get :

ddxf(x)=ddx(x1tt1(t+tlnt+1)dt)=xx1(x+xlnx+1) and ddxg(x)=(1+lnx)xx

So limxx1tt1(t+tlnt+1)dtxx=limxddxf(x)ddxg(x)=limxxx1(x+xlnx+1)(1+lnx)xx

=limxxx1xx(x+xlnx+1)lnx+1=limxx1(x(1+lnx)+1)1+lnx=limx1+lnx+x11+lnx

=1+limxx11+lnx=1+limx1x(1+lnx)=1+1=0+1=1

No comments:

Post a Comment