Exercise:
Find limx→∞∫x1tt−1(t+tlnt+1)dtxx
Solution: Let f(x)=∫x1tt−1(t+tlnt+1)dt&g(x)=xx
So limx→∞∫x1tt−1(t+tlnt+1)dtxx=limx→∞f(x)g(x)=f(∞)g(∞)=∞∞indform
Using L’Hopital Rule and Fundamental theorem of calculus we get :
ddxf(x)=ddx(∫x1tt−1(t+tlnt+1)dt)=xx−1(x+xlnx+1) and ddxg(x)=(1+lnx)xx
So limx→∞∫x1tt−1(t+tlnt+1)dtxx=limx→∞ddxf(x)ddxg(x)=limx→∞xx−1(x+xlnx+1)(1+lnx)xx
=limx→∞xx−1x−x(x+xlnx+1)lnx+1=limx→∞x−1(x(1+lnx)+1)1+lnx=limx→∞1+lnx+x−11+lnx
=1+limx→∞x−11+lnx=1+limx→∞1x(1+lnx)=1+1∞=0+1=1
No comments:
Post a Comment