Exercise:
In the adjacent figure we have:
$\left( d \right)$ is a straight line of equation $x=10$ and
curve $\left( C' \right)$ is obtained from $\left( C \right)$ by
the translation vector $\vec{v}=3\vec{j}$
Let $\left( D \right)$ be the Domain limited by curves $\left( C \right)\,\,\And \,\left( C' \right)$
and the line $\left( d \right)$ & $y-axis$
Calculate the Area of domain $\left( D \right)$
Solution: we have $\left( C' \right)$ is obtained from $\left( C \right)$ by the translation vector $\vec{v}=3\vec{j}$
So the functions that represent the curves $\left( C \right)\,\And \,\left( C' \right)$ are the same
So if $\left( C \right)$ has function $f\left( x \right)$ then $\left( C' \right)$ has the function $f\left( x \right)+3$
Thus $A=\int_{0}^{10}{\left( {{f}_{\left( c' \right)}}-{{f}_{\left( c \right)}} \right)dx=\int_{0}^{10}{\left( f\left( x \right)+3-f\left( x \right) \right)dx}=3\int_{0}^{10}{dx=30\,\,uni{{t}^{2}}}}$
No comments:
Post a Comment