Exercise:
Find $f\left( 0 \right)$ such that $f\left( f\left( x \right) \right)={{x}^{2}}-x+1$ where $f:\mathbb{R}\to \mathbb{R}$
Solution: Let $f\left( x \right)={{x}^{2}}-x+1$ and we have $f\left( f\left( x \right) \right)={{x}^{2}}-x+1$
$\Leftrightarrow f\left( {{x}^{2}}-x+1 \right)={{f}^{2}}\left( x \right)-f\left( x \right)+1$
For $x=0\Leftrightarrow f\left( 1 \right)={{f}^{2}}\left( 0 \right)-f\left( 0 \right)+1$
For $x=1\Leftrightarrow f\left( 1 \right)={{f}^{2}}\left( 1 \right)-f\left( 1 \right)+1$
So ${{f}^{2}}\left( 0 \right)-{{f}^{2}}\left( 1 \right)-f\left( 0 \right)+f\left( 1 \right)=0\Leftrightarrow \left( f\left( 0 \right)-f\left( 1 \right) \right)\left( f\left( 0 \right)+f\left( 1 \right) \right)-\left( f\left( 0 \right)-f\left( 1 \right) \right)=0$
$\Leftrightarrow \left( f\left( 0 \right)-f\left( 1 \right) \right)\left( f\left( 0 \right)+f\left( 1 \right)-1 \right)=0\Leftrightarrow f\left( 0 \right)=f\left( 1 \right)\,\,\,or\,\,\,f\left( 0 \right)+f\left( 1 \right)=1$
So we have two cases to be considered in this discussion
If $f\left( 0 \right)=f\left( 1 \right)\Leftrightarrow {{f}^{2}}\left( 0 \right)-f\left( 0 \right)+1=f\left( 0 \right)\Leftrightarrow f\left( 0 \right)\left[ f\left( 0 \right)-1 \right]=f\left( 0 \right)-1\Leftrightarrow f\left( 0 \right)=1$
If $f\left( 0 \right)+f\left( 1 \right)=1\Leftrightarrow f\left( 1 \right)=1-f\left( 0 \right)\Leftrightarrow {{f}^{2}}\left( 0 \right)-f\left( 0 \right)+1=1-f\left( 0 \right)\Leftrightarrow f\left( 0 \right)=0$
Now if $f\left( 0 \right)=1$ then $f\left( f\left( 0 \right) \right)={{f}^{2}}\left( 0 \right)-f\left( 0 \right)+1=1-1+1=1\Leftrightarrow f\left( 1 \right)=1$ true
If $f\left( 0 \right)=0\Leftrightarrow f\left( f\left( 0 \right) \right)={{f}^{2}}\left( 0 \right)-f\left( 0 \right)+1=0-0+1=1\Leftrightarrow f\left( 0 \right)=1$ false
Therefore $f\left( 0 \right)=1$
*____________________
the idea of solution credit to Trần Hữu Phúc
No comments:
Post a Comment