Exercise:
Solve , $\left( \begin{matrix}
n \\
1234 \\
\end{matrix} \right)=\left( \begin{matrix}
n \\
4321 \\
\end{matrix} \right)$
Solution: we know that $\left( \begin{matrix}
n \\
r \\
\end{matrix} \right)=\frac{n!}{\left( n-r \right)!r!}$ & $\left( \begin{matrix}
n \\
a \\
\end{matrix} \right)=\left( \begin{matrix}
n \\
n-a \\
\end{matrix} \right)$
So $a=1234\,\,\And \,\,n-a=4321$ $\Rightarrow n-1234=4321\Rightarrow n=4321+1234=5555$
Or we can solve it using the definition of combination as follows :
So $\left( \begin{matrix}
n \\
1234 \\
\end{matrix} \right)=\frac{n!}{\left( n-1234 \right)!1234!}\,\,\,\And \,\,\left( \begin{matrix}
n \\
4321 \\
\end{matrix} \right)=\frac{n!}{\left( n-4321 \right)!4321!}$
Hence $\frac{n!}{\left( n-1234 \right)!1234!}=\frac{n!}{\left( n-4321 \right)!4321!}$
$\Leftrightarrow n!\left( n-4321 \right)!4321!=n!\left( n-1234 \right)!1234!$
$\Rightarrow \frac{\left( n-4321 \right)!4321!}{\left( n-1234 \right)!1234!}=1$
//$\frac{\left( n-a \right)!a!}{\left( n-b \right)!b!}=1$ Put $b=n-a$ $\Rightarrow \frac{\left( n-a \right)!a!}{\left( n-\left( n-a \right) \right)!\left( n-a \right)!}=\frac{\left( n-a \right)!a!}{a!\left( n-a \right)!}=1$
So it’s clear that $n=a+b=5555$
No comments:
Post a Comment