Series Expansion

Exercise:

Compute, $\sum\limits_{i=1}^{\infty }{\frac{{{i}^{5}}}{{{2}^{i}}}}$

Solution: we have $\sum\limits_{i=1}^{\infty }{\frac{{{i}^{5}}}{{{2}^{i}}}}=\sum\limits_{i=0}^{\infty }{\frac{{{\left( i+1 \right)}^{5}}}{{{2}^{i+1}}}=\frac{1}{2}\sum\limits_{i=0}^{\infty }{\frac{{{\left( i+1 \right)}^{5}}}{{{2}^{i}}}}}$

now by using the binomial expand for ${{\left( i+1 \right)}^{5}}={{i}^{5}}+5{{i}^{4}}+10{{i}^{3}}+10{{i}^{2}}+5i+1$

So $\sum\limits_{i=1}^{\infty }{\frac{{{i}^{5}}}{{{2}^{i}}}=\frac{1}{2}\left( \sum\limits_{i=0}^{\infty }{\frac{{{i}^{5}}}{{{2}^{i}}}+5\sum\limits_{i=0}^{\infty }{\frac{{{i}^{4}}}{{{2}^{i}}}+10\sum\limits_{i=0}^{\infty }{\frac{{{i}^{3}}}{{{2}^{i}}}+10\sum\limits_{i=0}^{\infty }{\frac{{{i}^{2}}}{{{2}^{i}}}+5\sum\limits_{i=0}^{\infty }{\frac{i}{{{2}^{i}}}+\sum\limits_{i=0}^{\infty }{\frac{1}{{{2}^{i}}}}}}}}} \right)}$

But \[ \sum\limits_{i=0}^{\infty }{\frac{1}{{{2}^{i}}}=1+\sum\limits_{i=1}^{\infty }{{{\left( \frac{1}{2} \right)}^{i}}=\frac{\frac{1}{2}}{1-\frac{1}{2}}=\frac{\frac{1}{2}}{\frac{1}{2}}=2}}\] & \[\sum\limits_{i=0}^{\infty }{\frac{i}{{{2}^{i}}}=0+\sum\limits_{i=1}^{\infty }{\frac{i}{{{2}^{i}}}}}=2 \]

since $\sum\limits_{i=1}^{\infty }{\frac{i}{{{2}^{i}}}=\sum\limits_{i=0}^{\infty }{\frac{i+1}{{{2}^{i+1}}}=}\frac{1}{2}\left( \sum\limits_{i=0}^{\infty }{\frac{i}{{{2}^{i}}}+\sum\limits_{i=0}^{\infty }{\frac{1}{{{2}^{i}}}}} \right)=\frac{1}{2}\left( \sum\limits_{i=1}^{\infty }{\frac{i}{{{2}^{i}}}+2} \right)}$ $\Rightarrow \left( 1-\frac{1}{2} \right)\sum\limits_{i=1}^{\infty }{\frac{i}{{{2}^{i}}}=1}$ $\Rightarrow \sum\limits_{i=1}^{\infty }{\frac{i}{{{2}^{i}}}}=2$

Thus $\sum\limits_{i=1}^{\infty }{\frac{{{i}^{2}}}{{{2}^{i}}}}=\frac{1}{2}\left( \sum\limits_{i=1}^{\infty }{\frac{{{i}^{2}}}{{{2}^{i}}}+4+2} \right)=\frac{1}{2}\sum\limits_{i=1}^{\infty }{\frac{{{i}^{2}}}{{{2}^{i}}}+3}$ $\Rightarrow \left( 1-\frac{1}{2} \right)\sum\limits_{i=1}^{\infty }{\frac{{{i}^{2}}}{{{2}^{i}}}=3\Leftrightarrow \sum\limits_{i=1}^{\infty }{\frac{{{i}^{2}}}{{{2}^{i}}}=6}}$

Same work we will work for $\sum\limits_{i=0}^{\infty }{\frac{{{i}^{3}}}{{{2}^{i}}}}\,\,\And \,\,\sum\limits_{i=0}^{\infty }{\frac{{{i}^{4}}}{{{2}^{i}}}}$

$\sum\limits_{i=0}^{\infty }{\frac{{{i}^{3}}}{{{2}^{i}}}=0+\sum\limits_{i=1}^{\infty }{\frac{{{i}^{3}}}{{{2}^{i}}}=\sum\limits_{i=0}^{\infty }{\frac{{{\left( i+1 \right)}^{3}}}{{{2}^{i+1}}}=\frac{1}{2}\left( \sum\limits_{i=0}^{\infty }{\frac{{{i}^{3}}}{{{2}^{i}}}+3\sum\limits_{i=0}^{\infty }{\frac{{{i}^{2}}}{{{2}^{i}}}+3\sum\limits_{i=0}^{\infty }{\frac{i}{{{2}^{i}}}+\sum\limits_{i=0}^{\infty }{\frac{1}{{{2}^{i}}}}}}} \right)}}}$

$=\frac{1}{2}\left( \sum\limits_{i=1}^{\infty }{\frac{{{i}^{3}}}{{{2}^{i}}}+3\left( 6 \right)+3\left( 2 \right)+2} \right)$ $\Rightarrow \sum\limits_{i=1}^{\infty }{\frac{{{i}^{3}}}{{{2}^{i}}}}=\frac{1}{2}\sum\limits_{i=1}^{\infty }{\frac{{{i}^{3}}}{{{2}^{i}}}+13}$ $\Rightarrow \sum\limits_{i=0}^{\infty }{\frac{{{i}^{3}}}{{{2}^{i}}}=26}$

Similarly we expand $\sum\limits_{i=0}^{\infty }{\frac{{{i}^{4}}}{{{2}^{i}}}=0+\sum\limits_{i=1}^{\infty }{\frac{{{i}^{4}}}{{{2}^{i}}}=\sum\limits_{i=0}^{\infty }{\frac{{{\left( i+1 \right)}^{4}}}{{{2}^{i+1}}}}}}=\frac{1}{2}\sum\limits_{i=0}^{\infty }{\frac{{{\left( i+1 \right)}^{4}}}{{{2}^{i}}}}$ 

$\Rightarrow \sum\limits_{i=0}^{\infty }{\frac{{{i}^{4}}}{{{2}^{i}}}}=\frac{1}{2}\left( \sum\limits_{i=0}^{\infty }{\frac{{{i}^{4}}}{{{2}^{i}}}+4\sum\limits_{i=0}^{\infty }{\frac{{{i}^{3}}}{{{2}^{i}}}+6\sum\limits_{i=0}^{\infty }{\frac{{{i}^{2}}}{{{2}^{i}}}+4\sum\limits_{i=0}^{\infty }{\frac{i}{{{2}^{i}}}+\sum\limits_{i=0}^{\infty }{\frac{1}{{{2}^{i}}}}}}}} \right)$

 $=\frac{1}{2}\sum\limits_{i=0}^{\infty }{\frac{{{i}^{4}}}{{{2}^{i}}}+\frac{1}{2}\left( 4\left( 26 \right)+6\left( 6 \right)+4\left( 2 \right)+2 \right)}$ $\Rightarrow \sum\limits_{i=0}^{\infty }{\frac{{{i}^{4}}}{{{2}^{i}}}}=\frac{1}{2}\sum\limits_{i=0}^{\infty }{\frac{{{i}^{4}}}{{{2}^{i}}}+75}$ $\Leftrightarrow \sum\limits_{i=0}^{\infty }{\frac{{{i}^{4}}}{{{2}^{i}}}=150}$


Thus $\sum\limits_{i=1}^{\infty }{\frac{{{i}^{5}}}{{{2}^{i}}}=\frac{1}{2}\sum\limits_{i=0}^{\infty }{\frac{{{i}^{5}}}{{{2}^{i}}}+\frac{1}{2}\left( 5\left( 150 \right)+10\left( 26 \right)+10\left( 6 \right)+5\left( 2 \right)+2 \right)}}$ thus $\sum\limits_{i=1}^{\infty }{\frac{{{i}^{5}}}{{{2}^{i}}}=1082}$