$\int{\frac{\frac{\cos x-\sin x}{\sqrt{\sin x\cos x}}}{1+6\sin x\cos x}dx}$

Solution:
we have$\frac{\cos x-\sin x}{\sqrt{\sin x\cos x}}=\frac{\cos x}{\sqrt{\sin x\cos x}}-\frac{\sin x}{\sqrt{\sin x\cos x}}$ &$1+6\sin x\cos x=1+6\frac{\sin x}{\cos x}{{\cos }^{2}}x$ $=1+6\frac{\tan x}{{{\sec }^{2}}x}$ so $\int{\frac{\frac{\cos x-\sin x}{\sqrt{\sin x\cos x}}}{1+6\sin x\cos x}dx}=\int{\frac{\frac{\cos x}{\sqrt{\sin x\cos x}}-\frac{\sin x}{\sqrt{\sin x\cos x}}}{1+6\frac{\tan x}{{{\sec }^{2}}x}}dx}$

but $\frac{\cos x}{\sqrt{\sin x\cos x}}=\frac{\cos x}{\sqrt{\frac{\cos x}{\sin x}{{\sin }^{2}}x}}=\frac{\cos x}{\sqrt{\frac{\cot x}{{{\csc }^{2}}x}}}=\frac{\cos x}{\frac{\sqrt{\cot x}}{\csc x}}=\frac{\csc x\cos x}{\sqrt{\cot x}}=\frac{\cot x}{\sqrt{\cot x}}=\sqrt{\cot x}$ &$\frac{\sin x}{\sqrt{\sin x\cos x}}=\frac{\sin x}{\sqrt{\frac{\sin x}{\cos x}{{\cos }^{2}}x}}=\frac{\sin x}{\sqrt{\frac{\tan x}{{{\sec }^{2}}x}}}=\frac{\sin x\sec x}{\sqrt{\tan x}}=\frac{\tan x}{\sqrt{\tan x}}=\sqrt{\tan x}$

hence $\int{\frac{\frac{\cos x-\sin x}{\sqrt{\sin x\cos x}}}{1+6\sin x\cos x}dx}$ \(=\int{\frac{\sqrt{\cot x}-\sqrt{\tan x}}{1+6\frac{\tan x}{{{\sec }^{2}}x}}dx}=\int{\frac{{{\sec }^{2}}x\left( \sqrt{\cot x}-\sqrt{\tan x} \right)}{{{\sec }^{2}}x+6\tan x}dx}\) but ${{\sec }^{2}}x={{\tan }^{2}}x+1$ so $\int{\frac{{{\sec }^{2}}x\left( \sqrt{\cot x}-\sqrt{\tan x} \right)}{{{\sec }^{2}}x+6\tan x}dx}=\int{\frac{\left( {{\tan }^{2}}x+1 \right)\left( \sqrt{\cot x}-\sqrt{\tan x} \right)}{{{\tan }^{2}}x+1+6\tan x}dx}$

\(=\int{\frac{\left( {{\tan }^{2}}x+1 \right)\left( \sqrt{\cot x}-\sqrt{\tan x} \right)}{{{\tan }^{2}}x+2\tan x+4\tan x+1}dx}=\int{\frac{{{\sec }^{2}}x\left( \sqrt{\cot x}-\sqrt{\tan x} \right)}{{{\left( \tan x+1 \right)}^{2}}+4\tan x}dx}\) but $\sqrt{\cot x}=\sqrt{\frac{1}{\tan x}}$ $\Rightarrow \sqrt{\cot x}-\sqrt{\tan x}=\frac{1}{\sqrt{\tan x}}-\sqrt{\tan x}=\frac{1-\tan x}{\sqrt{\tan x}}$so $\int{\frac{{{\sec }^{2}}x\left( \sqrt{\cot x}-\sqrt{\tan x} \right)}{{{\left( \tan x+1 \right)}^{2}}+4\tan x}dx}$ $=\int{\frac{{{\sec }^{2}}x\left( \frac{1-\tan x}{\sqrt{\tan x}} \right)}{{{\left( \tan x+1 \right)}^{2}}+4\tan x}dx}$$=\int{\frac{\left( 1-\tan x \right)\frac{{{\sec }^{2}}x}{\sqrt{\tan x}}}{{{\left( \tan x+1 \right)}^{2}}+4\tan x}dx}$ $=-\int{\frac{\left( \tan x-1 \right)\frac{{{\sec }^{2}}x}{\sqrt{\tan x}}}{{{\left( \tan x+1 \right)}^{2}}+4\tan x}dx}$ $=-\int{\frac{\left( \tan x-1 \right)\frac{2{{\sec }^{2}}x}{2\sqrt{\tan x}}}{{{\left( \tan x+1 \right)}^{2}}+4\tan x}dx}=-2\int{\frac{\tan x-1\frac{{{\sec }^{2}}x}{2\sqrt{\tan x}}}{{{\left( \tan x+1 \right)}^{2}}+4\tan x}dx}$

$=-2\int{\frac{\tan x-1}{{{\left( \tan x+1 \right)}^{2}}+4\tan x}\frac{{{\sec }^{2}}x}{2\sqrt{\tan x}}dx}$ Let $u=\sqrt{\tan x}\Rightarrow du=\frac{\left( \tan x \right)'}{2\sqrt{\tan x}}=\frac{{{\sec }^{2}}x}{2\sqrt{\tan x}}dx$ & ${{u}^{2}}=\tan x$ so $-2\int{\frac{\tan x-1}{{{\left( \tan x+1 \right)}^{2}}+4\tan x}\times \frac{{{\sec }^{2}}x}{2\sqrt{\tan x}}dx}=-2\int{\frac{{{u}^{2}}-1}{{{\left( {{u}^{2}}+1 \right)}^{2}}+4{{u}^{2}}}du}$ $=-2\int{\frac{{{u}^{2}}\left( 1-\frac{1}{{{u}^{2}}} \right)}{{{\left( u\left( u+\frac{1}{u} \right) \right)}^{2}}+4{{u}^{2}}}du}=-2\int{\frac{{{u}^{2}}\left( 1-\frac{1}{{{u}^{2}}} \right)}{{{u}^{2}}\left[ {{\left( u+\frac{1}{u} \right)}^{2}}+4 \right]}du}=-2\int{\frac{1-\frac{1}{{{u}^{2}}}}{{{\left( u+\frac{1}{u} \right)}^{2}}+4}du}$
Let $w=u+\frac{1}{u}\Rightarrow dw=\left( 1-\frac{1}{{{u}^{2}}} \right)du$ so $-2\int{\frac{1-\frac{1}{{{u}^{2}}}}{{{\left( u+\frac{1}{u} \right)}^{2}}+4}du}=-2\int{\frac{dw}{{{\left( 2 \right)}^{2}}+{{w}^{2}}}}=-2\int{\frac{dw}{4\left( 1+{{\left( \frac{w}{2} \right)}^{2}} \right)}}$

Let $v=\frac{w}{2}\Rightarrow 2v=w\Rightarrow $ so $-2\int{\frac{dw}{4\left( 1+{{\left( \frac{w}{2} \right)}^{2}} \right)}=-2\int{\frac{2dv}{4\left( 1+{{v}^{2}} \right)}=-\int{\frac{dv}{1+{{v}^{2}}}}}}$ $=-\arctan \left( v \right)+c=-\arctan \left( \frac{w}{2} \right)+c=-\arctan \left( \frac{u+\frac{1}{u}}{2} \right)+c=-\arctan \left( \frac{{{u}^{2}}+1}{2u} \right)+c$$=-\arctan \left( \frac{\tan x+1}{2\sqrt{\tan x}} \right)+c$ 

No comments:

Post a Comment