Integration using trigonometric substitution

Exercise:

Compute, $\int_{\sqrt{2}}^{2}{\frac{dx}{{{x}^{2}}\sqrt{{{x}^{2}}-1}}}$

Solution: Let$x=\sec u\Rightarrow dx=\sec u\tan u\,du$

So $\int_{\sqrt{2}}^{2}{\frac{dx}{{{x}^{2}}\sqrt{{{x}^{2}}-1}}=\int_{x=\sqrt{2}}^{x=2}{\frac{\sec u\tan udu}{{{\sec }^{2}}u\sqrt{{{\sec }^{2}}u-1}}}}$

 $=\int_{x=\sqrt{2}}^{x=2}{\frac{\sec u\tan udu}{{{\sec }^{2}}u\tan u}}$ $=\int_{x=\sqrt{2}}^{x=2}{\frac{du}{\sec u}}$ $=\int_{x=\sqrt{2}}^{x=2}{\cos u\,du}$ $=\left[ \sin u \right]_{x=\sqrt{2}}^{x=2}$

but $x=\frac{1}{\cos u}\Leftrightarrow \sin u=\sqrt{1-{{\cos }^{2}}u}=\sqrt{1-\frac{1}{{{x}^{2}}}}$


$\int_{\sqrt{2}}^{2}{\frac{dx}{{{x}^{2}}\sqrt{{{x}^{2}}-1}}}$$=\left[ \sqrt{1-\frac{1}{{{x}^{2}}}} \right]_{x=\sqrt{2}}^{x=2}=\sqrt{1-\frac{1}{4}}-\sqrt{1-\frac{1}{2}}$ $=\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}=\frac{\sqrt{3}-\sqrt{2}}{2}$