Exercise:
(Elliptic Integrals )
Integrate , $\int_{1}^{\infty
}{\frac{dx}{\sqrt{\left( {{x}^{2}}-2x+10 \right)\left( {{x}^{2}}-2x+7
\right)}}}$
Solution: we
have ${{x}^{2}}-2x+10={{x}^{2}}-2x+1-1+10={{\left( x-1 \right)}^{2}}+9$
Also we have
${{x}^{2}}-2x+7={{x}^{2}}-2x+1-1+7={{\left( x-1 \right)}^{2}}+6$
So $\int_{1}^{\infty
}{\frac{dx}{\sqrt{\left( {{x}^{2}}-2x+10 \right)\left( {{x}^{2}}-2x+7
\right)}}}=\int_{1}^{\infty }{\frac{dx}{\sqrt{{{\left( x-1
\right)}^{2}}+9}\times \sqrt{{{\left( x-1 \right)}^{2}}+6}}}$
Take $w=x-1\Leftrightarrow
dw=dx$ & $w\left( 1 \right)=0\,\,,\,w\left( \infty \right)=\infty $
So $\int_{1}^{\infty
}{\frac{dx}{\sqrt{{{\left( x-1 \right)}^{2}}+9}\times \sqrt{{{\left( x-1
\right)}^{2}}+6}}=\int_{0}^{\infty }{\frac{dw}{\sqrt{{{w}^{2}}+9}\times
\sqrt{{{w}^{2}}+6}}}}$
Let $w=\sqrt{6}\tan
\theta \Rightarrow \theta =\arctan w\,\Leftrightarrow \theta =0\,\,\And
\,\,\theta =\frac{\pi }{2}$ whenever $w=1\,\And \,w=\infty $
So $\int_{0}^{\infty
}{\frac{dw}{\sqrt{{{w}^{2}}+9}\times \sqrt{{{w}^{2}}+6}}=\int_{0}^{\frac{\pi
}{2}}{\frac{\sqrt{6}\,\,d\left( \tan \theta
\right)}{\sqrt{6{{\tan }^{2}}\theta +9}\times \sqrt{6{{\tan }^{2}}\theta
+6}}}}$
but $d\left(
\tan \theta \right)={{\sec }^{2}}\theta
\,d\theta =\left( 1+{{\tan }^{2}}\theta
\right)d\theta $
So $\int_{0}^{\frac{\pi
}{2}}{\frac{\sqrt{6}d\left( \tan \theta
\right)}{\sqrt{6{{\tan }^{2}}\theta +9}\times \sqrt{6{{\tan }^{2}}\theta
+6}}}$ $=\int_{0}^{\frac{\pi }{2}}{\frac{\sqrt{6}{{\sec }^{2}}\theta d\theta
}{\sqrt{\left( 6{{\tan }^{2}}\theta +9 \right)6{{\sec }^{2}}\theta }}}$
$=\int_{0}^{\frac{\pi
}{2}}{\frac{\sqrt{6}{{\sec }^{2}}\theta d\theta }{\sec \theta
\sqrt{6}\sqrt{\left( 6{{\tan }^{2}}\theta +9 \right)}}}=\int_{0}^{\frac{\pi
}{2}}{\frac{\sec \theta d\theta }{\sqrt{6{{\tan }^{2}}\theta
+9}}}=\int_{0}^{\frac{\pi }{2}}{\frac{\frac{1}{\cos \theta }d\theta
}{\sqrt{\frac{6{{\sin }^{2}}\theta +9{{\cos }^{2}}\theta }{{{\cos }^{2}}\theta
}}}}$
$=\int_{0}^{\frac{\pi
}{2}}{\frac{d\theta }{\sqrt{6{{\sin }^{2}}\theta +9{{\cos }^{2}}\theta }}}$ but
${{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta \Leftrightarrow 9{{\cos
}^{2}}\theta =9-9{{\sin }^{2}}\theta $
$=\int_{0}^{\frac{\pi
}{2}}{\frac{d\theta }{\sqrt{6{{\sin }^{2}}\theta +9-9{{\sin }^{2}}\theta
}}=\int_{0}^{\frac{\pi }{2}}{\frac{d\theta }{\sqrt{9-3{{\sin }^{2}}\theta
}}}=\int_{0}^{\frac{\pi }{2}}{\frac{d\theta }{\sqrt{9\left( 1-\frac{1}{3}{{\sin
}^{2}}\theta \right)}}}}$
$=\int_{0}^{\frac{\pi }{2}}{\frac{d\theta
}{3\sqrt{1-\frac{1}{3}{{\sin }^{2}}\theta }}}=\frac{1}{3}\int_{0}^{\frac{\pi
}{2}}{\frac{d\theta }{\sqrt{1-\frac{1}{3}{{\sin }^{2}}\theta
}}}=\frac{1}{3}EllipticF\left( \theta=\frac{\pi}{2} ,\frac{1}{\sqrt{3}} \right)$
No comments:
Post a Comment