Exercise:
Compute, $\int_{0}^{\frac{\pi
}{4}}{\frac{\tan \theta {{\sec }^{2}}\theta }{{{\tan }^{2}}\theta +3\tan \theta
+2}d\theta }$
Solution:
Let $u=\tan \theta \Rightarrow du={{\sec }^{2}}\theta d\theta $ and $u\left( 0
\right)=0\,\,\And \,\,u\left( \frac{\pi }{4} \right)=1$
So \(\int_{0}^{\frac{\pi
}{4}}{\frac{\tan \theta {{\sec }^{2}}\theta }{{{\tan }^{2}}\theta +3\tan \theta
+2}d\theta
}=\int_{0}^{1}{\frac{udu}{{{u}^{2}}+3u+2}}=\int_{0}^{1}{\frac{u}{\left( u+1
\right)\left( u+2 \right)}du}\)
Apply the
partial fraction
$\frac{u}{\left(
u+1 \right)\left( u+2 \right)}=\frac{A}{u+1}+\frac{B}{u+2}=\frac{Au+2A+Bu+B}{\left(
u+1 \right)\left( u+2 \right)}=\frac{u\left( A+B \right)+2A+B}{\left( u+1
\right)\left( u+2 \right)}$
So $A+B=1\,\,\And
\,\,2A+B=0$ $\Rightarrow A=-1\,\,\And \,\,B=2$
So $\int_{0}^{1}{\frac{u}{{{u}^{2}}+3u+2}du}=-\int_{0}^{1}{\frac{du}{u+1}+2\int_{0}^{1}{\frac{du}{u+2}}}$
$=\left[ -\ln \left| u+1 \right|+2\ln \left| u+2 \right| \right]_{0}^{1}$
$=-\ln 2+\ln
1+2\left( \ln 3-\ln 2 \right)=-3\ln 2+2\ln 3=\ln \left( \frac{9}{8} \right)$
i hope you know how to put a space in between. i usually put a space before the differential like f(x) \; dx
ReplyDeletethe google +1 on the right is for the blog or the post? add the social buttons at the bottom of each post that others can click to like or +1
ReplyDelete